ExiFRET: flexible tool for understanding FRET in complex geometries.

نویسندگان

  • Evelyne Deplazes
  • Dylan Jayatilaka
  • Ben Corry
چکیده

Fluorescence resonance energy transfer (FRET) can be utilized to gain low-resolution structural information by reporting on the proximity of molecules or measuring inter- and intramolecular distances. This method exploits the fact that the probability of the energy transfer is related to the separation between the fluorescent molecules. This relationship is well described for a single pair of fluorophores but is complicated in systems containing more than two fluorophores. Here, we present a Monte Carlo calculation scheme that has been implemented through a user-friendly web-based program called ExiFRET that can be used to determine the FRET efficiency in a wide range of fluorophore arrangements. ExiFRET is useful to model FRET for individual fluorophores randomly distributed in two or three dimensions, fluorophores linked in pairs or arranged in regular geometries with or without predefined stoichiometries. ExiFRET can model both uniform distributions and fluorophores that are aggregated in clusters. We demonstrate how this tool can be employed to understand the effect of labeling efficiency on FRET efficiency, estimate relative contributions of inter- and intramolecular FRET, investigate the structure of multimeric proteins, stoichiometries, and oligomers, and to aid experiments studying the aggregation of lipids and proteins in membrane environments. We also present an extension that can be used to study instances in which fluorophores have constrained orientations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A flexible approach to assess fluorescence decay functions in complex energy transfer systems

BACKGROUND Time-correlated Förster resonance energy transfer (FRET) probes molecular distances with greater accuracy than intensity-based calculation of FRET efficiency and provides a powerful tool to study biomolecular structure and dynamics. Moreover, time-correlated photon count measurements bear additional information on the variety of donor surroundings allowing more detailed differentiati...

متن کامل

A Novel Toolbox for Generating Realistic Biological Cell Geometries for Electromagnetic Microdosimetry

Researchers in bioelectromagnetics often require realistic tissue, cellular and sub-cellular geometry models for their simulations. However, biological shapes are often extremely irregular, while conventional geometrical modeling tools on the market cannot meet the demand for fast and efficient construction of irregular geometries. We have designed a free, user-friendly tool in MATLAB that comb...

متن کامل

Förster Resonance Energy Transfer (FRET) as a Tool for Dissecting the Molecular Mechanisms for Maturation of the Shigella Type III Secretion Needle Tip Complex

Förster resonance energy transfer (FRET) provides a powerful tool for monitoring intermolecular interactions and a sensitive technique for studying Å-level protein conformational changes. One system that has particularly benefited from the sensitivity and diversity of FRET measurements is the maturation of the Shigella type III secretion apparatus (T3SA) needle tip complex. The Shigella T3SA de...

متن کامل

Application of the Schwarz-Christoffel Transformation in Solving Two-Dimensional Turbulent Flows in Complex Geometries

In this paper, two-dimensional turbulent flows in different and complex geometries are simulated by using an accurate grid generation method. In order to analyze the fluid flow, numerical solution of the continuity and Navier-Stokes equations are solved using CFD techniques. Considering the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid by means of...

متن کامل

Implementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems

In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 17 1  شماره 

صفحات  -

تاریخ انتشار 2012